Part Number Hot Search : 
TF308B 68HC70 A8909CLB ICS1892 8F320 KRA772E STTH106 MAX4636
Product Description
Full Text Search
 

To Download CAT4104V-GT3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 CAT4104 700 mA Quad Channel Constant Current LED Driver
FEATURES
4 matched LED current sinks up to 175 mA Up to 25 V operation on LED pins Low dropout Current Source (0.4 V at 175 mA) LED current set by external resistor High frequency PWM dimming via EN/PWM "Zero" current Shutdown mode Thermal shutdown protection RoHS-compliant TDFN 8-Pad 2 x 3 mm and SOIC 8-Lead packages
DESCRIPTION
The CAT4104 provides four matched low dropout current sinks to drive high-brightness LED strings up to 175 mA per channel. The LED channel current is set by an external resistor connected to the RSET pin. The LED pins are compatible with high voltage up to 25 V supporting applications with long strings of LEDs. The EN/PWM logic input supports the device enable and high frequency external Pulse Width Modulation (PWM) dimming control. Thermal shutdown protection is incorporated in the device to disable the LED outputs whenever the die temperature exceeds 150C. The device is available in the 8-pad TDFN 2 mm x 3 mm package and the SOIC 8-Lead 150 mil wide package.
APPLICATIONS
Automotive Lighting General and Architectural Lighting LCD backlight
ORDERING INFORMATION
Part Number
CAT4104V-GT3 CAT4104VP2-GT3
Package SOIC-8* TDFN-8*
Quantity per Reel 3,000 3,000
Package Marking CAT4104V HC
* Lead Finish is NiPdAu
PIN CONFIGURATION
TDFN 8-Pad (Top View)
LED1 1 LED2 2 LED3 3 LED4 4 8 RSET
TYPICAL APPLICATION CIRCUIT
VCC 3 V to 25 V LEDs
7 VIN 6 EN/PWM 5 GND
VIN 5V OFF ON
VIN
CAT4104 LED1 LED2
EN/PWM LED3 RSET LED4 GND 175 mA
SOIC 8-Lead (Top View)
LED1 LED2 LED3 LED4 1 2 3 4 8 7 6 5 RSET VIN EN/PWM GND
R1 768
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
1
Doc. No. MD-5041 Rev. B
CAT4104 ABSOLUTE MAXIMUM RATINGS
Parameter VIN, RSET, EN/PWM Voltages LED1, LED2, LED3, LED4 Voltages Storage Temperature Range Junction Temperature Range Lead Temperature Rating -0.3 to 6 -0.3 to 25 -65 to +160 -40 to +150 300 Unit V V C C C
RECOMMENDED OPERATING CONDITIONS
Parameter VIN Voltage applied to LED1 to LED4, outputs off Voltage applied to LED1 to LED4, outputs on Ambient Temperature Range ILED per LED pin Rating 3.0 to 5.5 up to 25 up to 6* -40 to +85 10 to 175 Unit V V V C mA
* Keeping LEDx pin voltage below 6 V in operation is recommended to minimize thermal dissipation in the package. Typical application circuit with external components is shown on page 1.
ELECTRICAL OPERATING CHARACTERISTICS
Min and Max values are over the recommended operating conditions unless specified otherwise. Typical values are at VIN = 5.0 V, TAMB = 25C Symbol ILED-ACC ILED-DEV VDOUT VRSET IQ IQSHDN REN/PWM VHI VLO TSD THYS ILED/IRSET VUVLO Name LED Current Accuracy LED Channel Matching Dropout Voltage RSET Pin Voltage Quiescent Current Shutdown Current EN/PWM Pin * Internal pull-down resistance * Logic High Level * Logic Low Level Thermal Shutdown Thermal Hysteresis RSET to LED Current gain ratio Undervoltage lockout (UVLO) threshold 25 mA LED current No LED, RSET = Float No LED, RSET = 770 VEN = 0V 200 1.3 0.4 150 20 100 2.0 V Conditions
ILEDNOM - ILED ILEDNOM ILED - ILEDAVG , note 1 ILED
Min
Typ 2
Max
Units %
-5
1 400
+5
% mV
ILED = 175 mA 1.17
1.2 0.6 6
1.23
V mA mA
1
A k V V C C
Note 1: Min and Max values are tested for ILED = 50 mA, VIN = 3.5 V, VLEDx = 0.4 V, TAMB = 25C.
Doc. No. MD-5041 Rev. B
2
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
CAT4104 RECOMMENDED EN/PWM TIMING
Min and Max values are over the recommended operating conditions unless specified otherwise. Typical values are at VIN = 5.0 V, TAMB = 25C Symbol TPS TP1 TP2 TR TF TLO THI TPWRDWN Name Turn-On time, EN/PWM rising to ILED from shutdown Turn-On time, EN/PWM rising to ILED Turn-Off time, EN/PWM falling to ILED LED rise time LED fall time EN/PWM low time EN/PWM high time EN/PWM low time to shutdown delay
THI TLO EN/PWM SHUTDOWN TP2 TPS TP1 TR
90%
Conditions ILED = 175 mA ILED = 80 mA ILED = 175 mA ILED = 175 mA ILED = 80 mA ILED = 175 mA ILED = 80 mA ILED = 175 mA ILED = 80 mA
Min
Typ 1.5 1.3 600 400 300 700 440 360 320
Max
Units s ns ns ns ns s s
1 5 4
TPWRDWN
8
ms
POWERDOWN TF ILED =
SHUTDOWN 0 mA
1.2 V x 100 RSET
LED CURRENT SHUTDOWN 0 mA
50%
50% 10%
0 mA
QUIESCENT CURRENT SHUTDOWN 0 mA SHUTDOWN 0 mA
Figure 1. CAT4104 EN/PWM Timing
EN/PWM OPERATION
The EN/PWM pin has two primary functions. One function enables and disables the device. The other function turns the LED channels on and off for PWM dimming control. The device has a very fast turn-on time (from EN/PWM rising to LED on) and allows "instant on" when dimming LED using a PWM signal. Accurate linear dimming is compatible with PWM frequencies from 100 Hz to 5 kHz for PWM duty cycle down to 1%. PWM frequencies up to 50 kHz can be supported for duty cycles greater than 10%. When performing a combination of low frequencies and small duty cycles, the device may enter shutdown mode. This has no effect on the dimming accuracy, because the turn-on time TPS is very short, in the range of 1 s. To ensure that PWM pulses are recognized, pulse width low time TLO should be longer than 1 s. The CAT4104 enters a "zero current" shutdown mode after a 4 ms delay (typical) when EN/PWM is held low.
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
3
Doc. No. MD-5041 Rev. B
CAT4104 TYPICAL PERFORMANCE CHARACTERISTICS
VIN = 5 V, VCC = 5 V, LED forward voltage = 3.5 V, CIN = 1 F, TAMB = 25C unless otherwise specified. Quiescent Current vs. Input Voltage (RSET Open)
1.2 QUIESCENT CURRENT [mA]
QUIESCENT CURRENT [mA]
Quiescent Current vs. RSET Current
8.0
No Load
1.0
6.0
0.8
4.0
0.6
2.0
0.4 3.0 3.5 4.0 4.5 5.0 INPUT VOLTAGE [V] 5.5
0.0 0.0 0.5 1.0 1.5 RSET CURRENT [mA] 2.0
Quiescent Current vs. Input Voltage (Full Load)
7.0 QUIESCENT CURRENT [mA]
LED Dropout vs. LED Pin Voltage
200
Full Load
6.5
LED CURRENT [mA]
160 120 80 40 0
6.0
5.5
5.0 3.0 3.5 4.0 4.5 5.0 INPUT VOLTAGE [V] 5.5
0.0
0.2 0.4 0.6 0.8 LED PIN VOLTAGE [V]
1.0
LED Line Regulation
200 160 120 80 40 0 3.0 3.5 4.0 4.5 VIN [V] 5.0 5.5
LED Current Change vs. Temperature
200 160 120 80 40 0 -40 0 40 80 TEMPERATURE [C] 120
LED CURRENT [mA]
Doc. No. MD-5041 Rev. B
4
LED CURRENT [mA]
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
CAT4104 TYPICAL PERFORMANCE CHARACTERISTICS
VIN = 5 V, VCC = 5 V, LED forward voltage = 3.5 V, CIN = 1 F, TAMB = 25C unless otherwise specified. LED Current vs. RSET Resistor
1000
LED Current vs. LED Pin Voltage
200 LED CURRENT [mA] 160 120 80 40 0
LED CURRENT [mA]
100
10 0.1 1.0 RSET [k] 10.0
0
1
2
3
4
5
6
LED PIN VOLTAGE [V]
RSET Pin Voltage vs. Input Voltage
1.30
RSET Pin Voltage vs. Temperature
1.30
RSET VOLTAGE [V]
RSET VOLTAGE [V]
1.25
1.25
1.20
1.20
1.15
1.15
1.10 3.0 3.5 4.0 4.5 5.0 INPUT VOLTAGE [V] 5.5
1.10 -40 0 40 80 TEMPERATURE [C] 120
LED Off Current vs. LED pin Voltage
1.0 LED OFF CURRENT [A] . 0.8 0.6 -40C 0.4 +25C 0.2 +125C 0.0 0 5 10 15 20 25 30 LED PIN VOLTAGE [V]
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
5
Doc. No. MD-5041 Rev. B
CAT4104 TYPICAL PERFORMANCE CHARACTERISTICS
VIN = 5 V, VCC = 5 V, LED forward voltage = 3.5 V, CIN = 1 F, TAMB = 25C unless otherwise specified. EN/PWM Pull-down Current vs. VEN/PWM
25 20 15 10 5 0 0 1 2 3 4 ENABLE VOLTAGE [V] 5 ENABLE THRESHOLD [V] ENABLE CURRENT [uA] 1.4 1.2 -40C 1.0 0.8 0.6 0.4 3.0 3.5 4.0 4.5 5.0 INPUT VOLTAGE [V] 5.5 85C 25C
EN/PWM Threshold vs. VIN
Power Up from Shutdown
Power Down
PWM 200 Hz, 1% Duty Cycle
Doc. No. MD-5041 Rev. B
6
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
CAT4104 PIN DESCRIPTIONS
Name LED1 LED2 LED3 LED4 GND EN/PWM VIN RSET Pin SOIC 8-Lead 1 2 3 4 5 6 7 8 Pin TDFN 8-Lead 1 2 3 4 5 and TAB 6 7 8 Function LED1 cathode terminal LED2 cathode terminal LED3 cathode terminal LED4 cathode terminal Ground reference Device enable input and PWM control Device supply pin LED current set pin for the LED channels
PIN FUNCTION
VIN is the supply pin for the device. A small 0.1 F ceramic bypass capacitor is optional for noisy environments. Whenever the input supply falls below the under-voltage threshold, all LED channels are automatically disabled. EN/PWM is the enable and one wire dimming input for all LED channels. Guaranteed levels of logic high and logic low are set at 1.3 V and 0.4 V respetively. When EN/PWM is initially taken high, the device becomes enabled and all LED currents are set at a gain of 100 times the current in RSET. To place the device into zero current shutdown mode, the EN/PWM pin must be held low for 4 ms typical. LED1 to LED4 provide individual regulated currents for each of the LED cathodes. There pins enter a high impedance zero current state whenver the device is placed in shutdown mode. RSET pin is connected to an external resistor to set the LED channel current. The ground side of the external resistor should be star connected to the GND of the PCB. The pin source current mirrors the current to the LED sinks. The voltage at this pin is regulated to 1.2 V. GND is the ground reference for the device. The pin must be connected to the ground plane on the PCB. TAB (TDFN 8-Lead Only) is the exposed pad underneath the package. For best thermal performance, the tab should be soldered to the PCB and connected to the ground plane.
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
7
Doc. No. MD-5041 Rev. B
CAT4104 BLOCK DIAGRAM
VIN
LED1 VIN EN/PWM 1.2 V Reference
LED2
LED3
LED4
RSET
Current Setting
4 Current Sink Regulators
GND
Figure 2. CAT4104 Functional Block Diagram
BASIC OPERATION
The CAT4104 has four tightly matched current sinks to regulate LED current in each channel. The LED current in the four channels is mirrored from the current flowing through the RSET pin according to the following formula: 1.2 V ILED 100 x R SET Table 1 shows standard resistor values for RSET and the corresponding LED current. Table 1. RSET Resistor Settings LED Current [mA] 20 60 100 175 RSET [k] 6.34 2.10 1.27 0.768 The LED channels can withstand voltages up to 25 V. This makes the device ideal for driving long strings of high power LEDs from a high voltage source. Tight current regulation for all channels is possible over a wide range of input voltages and LED voltages due to independent current sensing circuitry on each channel. Each LED channel needs a minimum of 400 mV headroom to sink constant regulated current up to 175 mA. If the input supply falls below 2 V, the undervoltage lockout circuit disables all LED channels. Any unused LED channels should be left open. For applications requiring more than 175 mA current, LED channels can be tied together to sink up to a total of 700 mA from the one device.
Doc. No. MD-5041 Rev. B
8
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
CAT4104 APPLICATION INFORMATION
SINGLE 12 V SUPPLY The circuit shown in Figure 3 shows how to power the LEDs from a single 12 V supply using the CAT4104. Three external components are needed to create a lower voltage necessary for the VIN pin (below 5.5 V). The resistor R2 and zener diode Z provide a regulated voltage while the quiescent current runs through the N-Channel transistor M. The recommended parts are ON Semiconductor MM3Z6V2 zener diode (in SOD-323 package), and 2N7002L N-Channel transistor (in SOT23).
12V C2 1F R2 5k M Z 6.2V VIN C1 0.1F LED1 CAT4104 LED2 LED3 LED4 GND
NIGHTLIGHT DETECTION The circuit shown in Figure 5 illustrates how to use the CAT4104 in an automatic night light application. The light sensor allows the CAT4104 to be disabled during the day and enabled during the night. Five external components are needed to properly configure the part for night detection. Resistor R3 limits the quiescent current through the N-Channel transistor M. Resistors R1 and R2 act as a voltage divider to create the required voltage to turn on transistor M, which disables the CAT4104. The recommended parts are ON Semiconductor 2N7002L N-Channel transistor (in SOT23) and the Microsemi LX1972 light sensor. For best performance, the LED light should not interfere with the light sensor.
5V C2 1 F R1 100 k R3 100 k VDD Light Sensor VSS OFF ON LED3 EN/PWM RSET R4 GND LED4 C1 0.1 F LED1 VIN CAT4104 LED2
EN/PWM RSET R1
Figure 3. Single Supply Driving 12 LEDs
R2 1 M
M
DAYLIGHT DETECTION The circuit in Figure 4 shows how to use CAT4104 in an automatic light sensor application. The light sensor allows the CAT4104 to be enabled during the day and disabled during the night. Two external components are required to configure the part for ambient light detection and conserve power. Resistor R1 sets the bias for the light sensor. The recommended part is Microsemi LX1972 light sensor. For best performance, the LED light should not interfere with the light sensor.
5V C2 1 F R1 100 k
Figure 5. Night Detection LED CURRENT DERATING The circuit shown in Figure 6 provides LED temperature derating to avoid over-driving the LED under high ambient temperatures, by reducing the LED current to protect the LED from over-heating. The positive thermo coefficient (PTC) thermistor RPTC is used for temperature sensing and should be located near the LED. As the temperature of RPTC increases, the gate voltage of the MOSFET M1 decreases. This causes the transistor M1 on-resistance to increase which results in a reduction of the LED current. The circuit is powered from a single VCC voltage of 5 V. The recommended parts are Vishay 70C thermistor PTCSS12T071DTE and ON Semiconductor 2N7002L N-Channel transistor (in SOT23). The PCB and heatsink for the LED should be designed such that the LED current is constant within the normal temperature range. But as soon as the ambient temperature exceeds a max threshold, the LED current drops to protect the LEDs from overheating.
VDD Light Sensor VSS OFF ON C1 0.1 F
VIN
LED1 CAT4104 LED2 LED3
EN/PWM RSET LED4 GND
R1
Figure 4. Daylight Detection
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
9
Doc. No. MD-5041 Rev. B
CAT4104
VCC 5V C2 1 F RPTC
power dissipation PD, and the ambient temperature, resulting in the following equation: TJ = TAMB + PD (JC + CA) = TAMB + PD JA
350 mA
C1 0.1 F
VIN LED1 CAT4104 LED2 EN/PWM RSET LED3 LED4 GND
When mounted on a double-sided printed circuit board with two square inches of copper allocated for "heat spreading", the resulting JA is about 90C/W for the TDFN-8 package, and 160C/W for the SOIC-8 package. For example, at 60C ambient temperature, the maximum power dissipation for the TDFN-8 is calculated as follow:
PDmax = TJmax - TAMB 150 - 60 = =1W JA 90
R1 1436 M1 R2 5 k
Figure 6. LED Current Derating POWER DISSIPATION The power dissipation (PD) of the CAT4104 can be calculated as follows:
PD = (VIN x IIN ) + (VLEDN x ILEDN )
RECOMMENDED LAYOUT A small ceramic capacitor should be placed as close as possible to the driver VIN pin. The RSET resistor should have a Kelvin connection to the GND pin of the CAT4104. The board layout should provide good thermal dissipation through the PCB. In the case of the CAT4104VP2 in the TDFN package, a via can be used to connect the center tab to a large ground plane underneath as shown on figure 7.
where VLEDN is the voltage at the LED pin, and ILEDN is the LED current. Combinations of high VLEDN voltage and high ambient temperature can cause the CAT4104 to enter thermal shutdown. In applications where VLEDN is high, a resistor can be inserted in series with the LED string to lower the power dissipation PD. Thermal dissipation of the junction heat consists primarily of two paths in series. The first path is the junction to the case (JC) thermal resistance which is defined by the package style, and the second path is the case to ambient (CA) thermal resistance, which is dependent on board layout. The overall junction to ambient (JA) thermal resistance is equal to: JA = JC + CA For a given package style and board layout, the operating junction temperature TJ is a function of the
Figure 7. CAT4104 Recommended Layout
Doc. No. MD-5041 Rev. B
10
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
CAT4104 PACKAGE OUTLINE DRAWINGS
SOIC 8-Lead 150 mil (V)
(1)(2)
0F0F
SYMBOL
MIN
NOM
MAX
A A1 b c
E1 E
1.35 0.10 0.33 0.19 4.80 5.80 3.80 1.27 BSC 0.25 0.40 0
1.75 0.25 0.51 0.25 5.00 6.20 4.00 0.50 1.27 8
D E E1 e h L
PIN # 1 IDENTIFICATION TOP VIEW
D
h
A1
A
c e b L
SIDE VIEW
END VIEW
For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.
Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC standard MS-012.
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
11
Doc. No. MD-5041 Rev. B
CAT4104
TDFN 8-Pad 2 mm x 3 mm (VP2)
(1)(2)
1F1F
D
A
e
b
E
E2 PIN#1 IDENTIFICATION
A1 PIN#1 INDEX AREA D2 L
TOP VIEW
SIDE VIEW
BOTTOM VIEW
SYMBO L A A1 A2 A3 b D D2 E E2 e L
MIN 0.70 0.00 0.45 0.20 1.90 1.30 2.90 1.20 0.20
NOM 0.75 0.02 0.55 0.20 REF 0.25 2.00 1.40 3.00 1.30 050 TYP 0.30
MAX 0.80 0.05 0.65
A2 A3
FRONT VIEW
0.30 2.10 1.50 3.10 1.40 0.40
For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.
Notes: (1) All dimensions are in millimeters. (2) Complies with JEDEC standard MO-229.
Doc. No. MD-5041 Rev. B
12
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
CAT4104 EXAMPLE OF ORDERING INFORMATION2 (1)
F2F
Prefix CAT
Company ID
Device # Suffix 4104 V
Package V: SOIC VP2: TDFN
-G
Lead Finish G: NiPdAu
T3
Product Number
4104
Tape & Reel T: Tape & Reel 3: 3,000/Reel
Notes: (1) All packages are RoHS-compliant (Lead-free, Halogen-free). (2) The standard plated finish is NiPdAu. (3) The device used in the above example is a CAT4104V-GT3 (SOIC, NiPdAu, Tape & Reel, 3,000/Reel). (4) For additional temperature options, please contact your nearest ON Semiconductor Sales office.
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice
13
Doc. No. MD-5041 Rev. B
CAT4104 REVISION HISTORY
Date 26-Feb-09 13-Mar-09 Revision A B Description Initial Issue Updated Electrical Operating Characteristics Added new Typical Performance Characteristics Updated Block Diagram Updated Application Information
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center: Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative
Doc. No. MD-5041 Rev. B
14
(c) 2009 SCILLC. All rights reserved. Characteristics subject to change without notice


▲Up To Search▲   

 
Price & Availability of CAT4104V-GT3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X